Chem. Ber. 101, 1271-1285 (1968)

Hubert Schmidbaur und Gerhard Jonas

Isostere metallorganische Verbindungen, X¹⁾

Beiträge zur Chemie der Iminotrialkylphosphorane²⁾

Aus dem Institut für Anorganische Chemie der Universität Würzburg

(Eingegangen am 31. Oktober 1967)

Iminotrimethylphosphoran (1) wurde nach einem einfachen Verfahren erstmals dargestellt. Die Umsetzungen von 1 oder seinem Äthylhomologen mit Dimethylzink oder -cadmium führen zu N-Methylzink(cadmium)-iminotrialkylphosphoranen 3-6. Diese Verbindungen bilden wie ihre Siloxan-Isosteren tetramere Molekülc mit Kubanstruktur. Die Addition von Iminotrialkylphosphoranen an Trimethylaluminium, -gallium und -indium ergibt isolierbare 1:1-Komplexe geringer thermischer Stabilität (7-11), deren thermische Spaltung die im Prinzip bereits bekannten N-Dimethylmetall-iminotrialkylphosphorane 12-19, dimere Verbindungen mit Vierringstruktur, liefert. Das durch Metallierung von 1 erhaltene N-Lithium-Derivat 2 reagiert mit Dimethylchlorphosphin und -arsin unter LiCl-Abspaltung zu N-Dimethylphosphino(arsino)-iminotrimethylphosphoran 20 bzw. 21. Die Quartärisierung von 20 und 21 mit Methyljodid erlaubt die Synthese von Bis-trimethylphosphoranyliden-bzw. Trimethylphosphoranyliden-trimethylarsenyliden-ammoniumjodid (23, 24).

8. . 24

Im Zusammenhang mit Arbeiten über Siloxanverbindungen von Elementen der II., III., IV. und V. Gruppe des Periodensystems $(A)^{3}$ interessierten wir uns auch für die isosteren organometall- bzw. organometalloidsubstituierten Iminophosphorane **(B)**:

 $\begin{array}{ccc} R_{3}Si-\bar{Q}-MR'_{n-1} & R_{3}P=\underline{N}-MR'_{n-1} \\ \mathbf{A} & \mathbf{B} \end{array}$

R = Alkyl; M = Metall bzw. Metalloid der Wertigkeit n

Einige unserer Ergebnisse wurden bereits publiziert ^{2,4-6}). In der vorliegenden Arbeit wird über die Darstellung von Iminotrimethylphosphoran und eine Reihe metallund metalloidorganischer Derivate desselben berichtet. Einige Reaktionen und Verbindungen des Iminotriäthyl- und Iminotriphenylphosphorans wurden ergänzend mit berücksichtigt.

¹⁾ IX. Mitteil.: B. Armer und H. Schmidbaur, Chem. Ber. 100, 1521 (1967).

²⁾ Vorläufige Mitteil.: H. Schmidbaur und G. Jonas, Angew. Chemie **79**, 413 (1967); Angew. Chem. internat. Edit. **6**, 449 (1967).

 ³⁾ Zusammenfassungen bei ^{3a)} H. Schmidbaur, Angew. Chem. 77, 206 (1965); Angew. Chem. internat. Edit. 4, 201 (1965); ^{3b)} Allg. Prakt. Chem. 1967, 138; ^{3c)} F. Schindler und H. Schmidbaur, Angew. Chem. 79, 697 (1967); Angew. Chem. internat. Edit. 6, 683 (1967).

⁴⁾ H. Schmidbaur, G. Kuhr und U. Krüger, Angew. Chem. 77, 866 (1965); Angew. Chem. internat. Edit. 4, 877 (1965).

⁵⁾ H. Schmidbaur und W. Wolfsberger, Chem. Ber. 100, 1000 und 1016 (1967); H. Schmidbaur, W. Wolfsberger und H. Körner, Chem. Ber. 100, 1023 (1967).

⁶⁾ H. Schmidbaur und G. Jonas, Chem. Ber. 100, 1120 (1967).

Alkali-Verbindungen der Iminophosphorane waren bisher, abgesehen von eigenen Untersuchungen 2.6), nicht bekannt. Desgleichen waren Derivate mit Elementen der zweiten und dritten Haupt- und Nebengruppe mit einer Ausnahme nicht beschrieben: *Appel* und *Voigt* gelang die Darstellung eines *N*-Diphenylboryl-iminotriphenylphosphorans⁷) (vgl. jedoch wieder 1. c.^{2,4,5}). Iminophosphoran-Verbindungen des Siliciums und seiner Homologen existieren dagegen schon in großer Zahl^{4-6,8-10}). Die Angaben über entsprechende Verbindungen des Phosphors und seiner Homologen sind daneben wieder recht spärlich^{2,10}).

Bis-phosphoranyliden-ammoniumsalze, die Quartärisierungsprodukte der *N*-Phosphinoiminophosphorane, spielen allerdings schon seit Jahren eine große Rolle auf vielen Teilgebieten der Phosphorchemie¹¹⁻¹⁴) und haben auch in jüngster Zeit wachsendes Interesse gefunden¹⁵⁻¹⁸). Wir beschreiben hier den Grundkörper dieser kationischen Species, das Bistrimethylphosphoranyliden-ammonium-Ion, und ein Arsen-Analoges.

I. Iminotrimethylphosphoran (1)

Alle bisher bekannten Syntheseverfahren für Iminotriorganophosphorane sind für höhere Homologe der Reihe ausgearbeitet worden^{18–21)}. Sie bereiten nach den Erfahrungen anderer Laboratorien¹⁸⁾ und nach unseren eigenen Untersuchungen²²⁾ bei der Darstellung der mit *Methyl*gruppen substituierten Grundglieder erstaunlicherweise sehr große Schwierigkeiten. Die von uns entwickelte Modifizierung der herkömmlichen Methoden umgeht diese Hindernisse und macht Iminotrimethylphosphoran (1) gut zugänglich. Die Reaktion von Trimethylphosphin mit Stickstoffwasserstoffsäure in ätherischer Lösung liefert unter exothermer Stickstoffentwicklung einen Niederschlag von Trimethylphosphinimonium-azid (Gl. 1). Dieses Produkt kann mittels Natrium in flüssigem Ammoniak am Stickstoffatom sehr leicht und exakt

- 9) K. L. Paciorek und R. Kratzer, J. org. Chemistry 31, 2426 (1966).
- ¹⁰⁾ H. Nöth, L. Meinel und H. Madersteig, Angew. Chem. 77, 734 (1965); Angew. Chem. internat. Edit. 4, 709 (1965).
- 11) H. Staudinger und J. Meyer, Helv. chim. Acta 2, 635 (1919).
- ¹²⁾ R. Appel und A. Hauss, Z. anorg. allg. Chem. 311, 290 (1961); R. Appel und G. Büchler, ebenda 320, 3 (1963); Z. Naturforsch. 17b, 422 (1962); R. Appel, G. Köhlein und R. Schöllhorn, Chem. Ber. 98, 1355 (1965).
- ¹³⁾ E. Fluck, Z. Naturforsch. 18b, 664 (1963); E. Fluck und F. L. Goldman, Chem. Ber. 96, 3091 (1963).
- ¹⁴⁾ M. Becke-Goehring und W. Lehr, Z. anorg. allg. Chem. **325**, 287 (1963); Chem. Ber. **94**, 1591 (1961).
- 15) N. L. Paddock, Quart. Rev. (chem. Soc., London) 18, 168 (1964).
- ¹⁶⁾ H. H. Sisler und C. Stratton, Inorg. Chem. 5, 2003 (1966); H. H. Sisler, H. S. Ahuja und N. L. Smith, ebenda 1, 84 (1962).
- 17) A. Schmidpeter und K. Düll, Chem. Ber. 100, 1116 (1967).
- ¹⁸⁾ ^{18a)} T. W Rave und H. R. Hays, J. org. Chemistry **31**, 2894 (1966); ^{18b)} T. W. Rave, J. org. Chemistry **32**, 3461 (1967).
- ¹⁹⁾ L. Birkofer und S. M. Kim, Chem. Ber. 97, 2100 (1964); L. Birkofer, A. Ritter und S. M. Kim, ebenda 96, 3099 (1963).
- ²⁰⁾ R. Appel und A. Hauss, Angew. Chem. **71**, 626 (1959); R. Appel, W. Büchner und E. Guth, Liebigs Ann. Chem. **618**, 53 (1958); R. Appel und A. Hauss, Chem. Ber. **93**, 405 (1960).
- ²¹¹ H. H. Sisler, H. S. Ahuja und N. S. Smith, J. org. Chemistry 26, 1819 (1961); B. Grushkin, Franz. Pat. 1345811 (1963), C. A. 60, 12055 (1964).
- 22) G. Jonas, Diplom- und Doktorarb., Univ. Würzburg 1966/67.

⁷⁾ *R. Appel* und *E. Voigt*, Chem. Ber. **95**, 2225 (1962).

⁸⁾ Eine Übersicht (bis 1965) gibt J. S. Thayer, Organometall. Chem. Rev. 1, 157 (1966), soweit es sich um die auf der Basis von Metallaziden dargestellten Substanzen handelt.

zur Hälfte deprotoniert werden (Gl. 2). Das entstehende Gemisch von Natriumazid und 1 kann nach Verdampfen des Ammoniaks durch Extraktion mit Benzol leicht aufgetrennt werden.

$$(CH_3)_3P + 2 HN_3 \longrightarrow [(CH_3)_3PNH_2]N_3 + N_2$$
(1)

$$[(CH_3)_3PNH_2]N_3 + Na \longrightarrow NaN_3 + \frac{1}{2}H_2 + (CH_3)_3P=NH$$
 (2)
1

1 komplettiert die in Tab. 1 zusammengestellte, bisher unvollständige Reihe isosterer Verbindungen des Phosphors.

	Schmp.	Sdp.	Lit.
(CH ₃) ₃ PO	141.5°	216.5°	23)
(CH ₃) ₃ PNH	$59-60^{\circ}$	70°/1 Torr	2)
(CH ₃) ₃ PCH ₂	$13 - 15^{\circ}$	$118 - 120^{\circ}$	24)
(CH ₃) ₃ PBH ₃	$103 - 103.5^{\circ}$	Subl.	25)

Tab. 1. Isostere Trimethylphosphorane

1 zeigt in benzolischer Lösung einfaches Molekulargewicht und entspricht darin dem monomeren Charakter der isosteren Phosphorane. Analytische und spektroskopische Daten geben die Tabellen 2, 3 und 10.

II. N-Lithium-iminotrimethylphosphoran

Nach dem bisher beschriebenen Verfahren⁶⁾ war das *N*-Lithium-Derivat von 1 nur als LiN₃-Komplex erhältlich. Die Umsetzungen von reinem 1 mit Methyl- oder Butyllithium liefern jetzt *freies N*-Lithium-iminotrimethylphosphoran (2):

$$(CH_3)_3 P=NH + LiR \longrightarrow RH + (CH_3)_3 P=N-Li$$
(3)
$$1$$

$$(R = CH_3, n-C_4H_9)$$

2 ist in inerten organischen Lösungsmitteln sehr schwer löslich und auch im Vakuum nicht sublimierbar. In diesen Eigenschaften unterscheidet es sich sehr deutlich von seinem Isosteren aus der Siloxanchemie, dem Lithiumtrimethylsilanolat²⁶, LiOSi(CH₃)₃.

III. N-Methylzink(cadmium)-iminotrialkylphosphorane

Die Metallierung von Iminotrialkylphosphoranen gelingt nicht nur mit Lithiumorganylen, sondern auch mit Zink- und Cadmiumdialkylen. Die Umsetzungen von Dimethylzink und -cadmium mit Iminotrimethyl- und Iminotriäthylphosphoran führen unter lebhafter Methanentwicklung zu den gewünschten organometallsubstituierten Iminophosphoranen:

²³⁾ J. Goubeau und W. Berger, Z. anorg. allg. Chem. 304, 147 (1960).

²⁴⁾ H. Schmidbaur und W. Tronisch, Angew. Chem. 79, 412 (1967); Angew. Chem. internat. Edit. 6, 448 (1967).

²⁵⁾ A. B. Burg und R. J. Wagner, J. Amer. chem. Soc. 75, 3872 (1953).

²⁶⁾ Vgl. z. B. H. Schmidbaur, J. A. Perez-Garcia und H. S. Arnold Z. anorg. allg. Chem. 328, 105 (1964).

$$(CH_3)_2M + R_3P=NH \longrightarrow CH_3M-N=PR_3 + CH_4$$
 (4)

 $(M = Zn, Cd; R = CH_3, C_2H_5)$

Die erhaltenen Verbindungen besitzen nach kryoskopischen Molekulargewichtsbestimmungen in Benzol vierfaches Formelgewicht, so daß ihnen nur die Formeln 3-6 gerecht werden.

$$\begin{array}{cccc} [CH_{3}Zn-N=P(CH_{3})_{3}]_{4} & [CH_{3}Zn-N=P(C_{2}H_{5})_{3}]_{4} \\ 3 & 4 \\ \\ [CH_{3}Cd-N=P(CH_{3})_{3}]_{4} & [CH_{3}Cd-N=P(C_{2}H_{5})_{3}]_{4} \\ 5 & 6 \end{array}$$

Die Protonenresonanzspektren beweisen die strukturelle Identität aller Methylmetall- und aller Iminophosphoran-Gruppierungen in den tetrameren Molekülen. Bei den Cadmiumverbindungen ist aus den Konstanten J(1H-C-113.115Cd) überdies auf eine Koordinationszahl von mindestens vier zu schließen (Tab. 2). Die bandenarmen Infrarotspektren (Tab. 4) lassen ebenso wie die NMR-Daten eine sehr symmetrische Molekülstruktur vermuten. Aus diesen Spektren und aus der engen Isosteriebeziehung zu den entsprechenden Siloxanen schließen wir für 3-6 auf eine Struktur mit würfelförmigem Grundgerüst. Eine solche Molekülgestalt scheint für die Siloxanverbindungen sichergestellt 3c,27 . Die sehr ähnlichen Debyeogramme von 5und 6 einerseits und dem zum Vergleich hergestellten $[CH_3ZnOSi(C_2H_5)_3]_4$ andererseits unterstreichen die isostrukturelle Beziehung.

IV. N-Dialkylaluminium(gallium, -indium)-iminotriorganophosphorane

Die Reaktionen von Iminotriorganophosphoranen mit den Trialkylverbindungen des Aluminiums, Galliums und Indiums führen unter nur wenig verschärften Bedingungen ebenfalls unter Alkanentwicklung zu *N*-Organometall-Derivaten. Hier sind jedoch Zwischenstufen der Reaktionen faßbar, die zunächst besprochen werden sollen. Erst ihre thermische Spaltung liefert die erwarteten Endprodukte.

1) Trialkylmetallkomplexe der Iminotriorganophosphorane

Bei der Vereinigung äquimolarer Mengen eines Trialkylmetallätherats und eines Iminotrialkylphosphorans bei tiefen Temperaturen entstehen ohne nennenswerte Gasentwicklung stabile 1:1-Komplexe, die sich durch Entfernen des Lösungsmittels isolieren lassen.

²⁷⁾ F. Schindler, H. Schmidbaur und U. Krüger, Angew. Chem. 77, 865 (1965); Angew. Chem. internat. Edit. 4, 876 (1965).

Tab. 2. NMR-Daten der Verbindungen 1-24 (die relativen Signalflächen entsprachen den Erwartungen)

, z	Formel	Lösungs	mittel	Stan- dard TMS	ΗN§	$\delta CH_3 P$	em. Verschie 8CH2P	bungen §CH ₃ CH ₂ P	δCH ₃ M	J(HCP)	pplungskonstar J(HCCP)	J(HCM)
-	(CH ₃) ₃ PNH	Benzol ((%01	ext.	+41.5	27.0		1		12.5	I	1
7	(CH ₃) ₃ PNLi	unlöslich		1	1	1	-	1	1	ì	I	-
e	CH ₃ ZnNP(CH ₃) ₃	Benzol (25 %)	ext.	I	38.5		****	+67	12.5	1	l
4	CH ₃ ZnNP(C ₂ H ₅) ₃	CCI4 ((%01	int.		1	98	64	÷66.5	11.5	16.0a)	I
io.	CH ₃ CdNP(CH ₃) ₃	Benzol (25 %)	ext.	-	- 37.5			+49.0	12.0	I	59.5 ^{b)} 62.5
9	CH ₃ CdNP(C ₂ H ₅) ₃	CCI₄ ((%01	int.	1	}	-93.5	- 64.5	+ 57.5	11.5	16.0a)	58.0 ^{b)} 62.0
٢	(CH ₃) ₃ AlNHP(CH ₃) ₃	Benzol ((%)	ext.	+12	-22.5	1	1	+60	13.5	I	ì
80	(CH ₃) ₃ AlNHP(C ₂ H ₅) ₃	CCI4 (5%)	int.	- 30	١	-110.5	-69.5	+70	12.2	17.5a)	1
6	(CH ₃) ₃ GaNHP(C ₂ H ₅) ₃	CCI4 (5%)	int.	-7	i		-67.5	+49.5	12.0	17.2ª>	
10	(CH ₃) ₃ InNHP(C ₂ H ₅) ₃	Benzol ((%)	ext.	0	I	-101.0	61.4	+43.5	12.0	17.1 ^{a)}	i
11	(C ₂ H ₅) ₃ AlNHP(C ₂ H ₅) ₃	cci4	5 %)	int.	-27	I	-114.5	-71.0	c)	12.0	17.5a)	
12	(CH ₃) ₂ AlNP(CH ₃) ₃	CH ₂ Cl ₂ (5 %)	ext.	ł	-84.0	I	-	+61.1	12.85	ł	
13	(CH ₃) ₂ AINP(C ₂ H ₅) ₃	ccit (5 %)	int.	I	1	-96.5	- 65.0	+65.5	11.5	16.0a)	l
14	$(C_2H_5)_2AINP(C_2H_5)_3$	ccl4	5 %)	int.		I	-100.5	66.5	(p	11.5	16.5a)	I
15	(CH ₃) ₂ GaNP(C ₂ H ₅) ₃	ccit (5 %)	int.	l	-	91.0	64.0	+ 39.5	10.5	16.5a)	ł
16	(CH ₃) ₂ InNP(C ₂ H ₅) ₃	CCI4 (5%)	int.	I	-	- 89.0	65.0	+33.0	10.5	16.0a)	I
17	(CH ₃) ₂ AINP(C ₆ H ₅) ₃	CCI ⁴ (3%)	int.	l	448c)	1	1	-+ 80.3	ļ	1	I
18	(CH ₃) ₂ GaNP(C ₆ H ₅) ₃	CCI4 (3%)	int.		444e)		l	+52.5	1	a	I
19	(CH ₃) ₂ InNP(C ₆ H ₅) ₃	ccl4 (3%)	int.	-	445e)	I	1	+50.0	1	1	1
20	(CH ₃) ₂ PNP(CH ₃) ₃	Benzol (5%)	ext.	I	–79 (P ^V)	I	•	48 (P ^{III})	12.5 (P ^V)	ł	4.0 (P ^{UI})
21	(CH ₃) ₂ AsNP(CH ₃) ₃	Benzol (5 %)	ext.	I		1	ì	-54.5	12.5	Į	I
22	(CH ₃) ₂ AsNP(C ₂ H ₅) ₃	Benzol (5%)	ext.	I	54.0	-92.5	-60.5	(-54.0)	11.5	16.5a)	ł
23	(CH ₃) ₃ PNP(CH ₃) ₃ J	DMSO (5%)	ext.)	i	-	14.0		1
24	(CH ₃) ₃ AsNP(CH ₃) ₂ J	DMSO (5 %)	ext.	I	98.0	í	î	-110.5	13.5		ł

a) A₃B₂X-Multiplett, J(HCCH)~7.5 Hz.

b) $J(HC^{111} \, {}^{113}Cd)$.

c) A_3B_2 ; $\delta CH_3CH_3M = -55.5$, $\delta CH_3CH_3M = +28.0$, $J(HCCH) \sim 8.0$ Hz. d) A_3B_2 ; $\delta CH_5CH_2M = -57.0$, $\delta CH_3CH_2M = +22.5$, $J(HCCH) \sim 8.0$ Hz.

e) Phenylmultiplett.

1275

 (CH ₃) ₃ PNH	Zuordnung	
 3460 sst 3000-1350	vNH Nujol	
1305 Sch 1290 sst	δ _{as} CH ₃ P	
1170 sst	vPN	
1090 st	δNH	
950 sst 865 st	ρCH ₃ P	
745 st		
722 m	vasPC3	
660 ss	vsPC3	

- Jao, J, IK-Danden von minounnenvipnosphoran (1) jem -	Tab.	3.	IR	-Banden	von	Iminotrimeth	٧ŀ	phosphora	n (1	1)	[cm ⁻¹]
---	------	----	----	---------	-----	--------------	----	-----------	------	----	---------------------

Tab. 4. IR-Banden der N-Methylmetall(II)-iminotrialkylphosphorane [cm⁻¹]

3	4	5	6	Zuordnung
1290 st	1285 sst	1300 st	1275 sst	δ(CH ₃ , CH ₂)P
1280 st	1270 Sch 1170 Sch	1285 sst 1180 s	1265 Sch 1175 Sch	δCH ₃ M
1150 Sch	1150 sst	1150 s	1150 Sch	
1090 sst	1085 sst	1090 sst	1080 sst	vP = N
1055 m	1045 s 1035 s		1045 Sch 1035 Sch	v(C-C)P
	1005 m 985 m		1005 s 985 m	ν(C-C)P
930 sst		930 sst	915 m	ρCH ₃ P
850 sst	770 sst	850 sst	810 Sch 770 sst	
	758 sst 740 m		760 sst 740 s	ρ(CH ₃ , CH ₂)P
720 sst	/15 st	720 sst 660 Sch	/10 \$	νPC ₃
	680 s 660 Sch		655 Sch	
625 sst	635 sst	630 sst	630 sst	νMC
530 Sch	530 st			
490 sst	490 sst		475	νMN
		450 sst	475 m 445 m	

$$\begin{array}{c} H \\ R_{3}M \cdot OEt_{2} + HN = PR_{3}^{!} \longrightarrow OEt_{2} + R_{3}M \cdot N = PR_{3}^{!} \\ (F = CH_{3}, C_{2}H_{5}; M = Al, Ga, In; R' = CH_{3}, C_{2}H_{5}, C_{6}H_{5}) \end{array}$$

Vier dieser Komplexverbindungen wurden in reiner Form dargestellt und analytisch und spektroskopisch charakterisiert (7-10). In allen anderen Fällen wurden aus dem Rohmaterial durch Erhitzen sofort die Folgeprodukte der Alkanabspaltung bereitet:

$$\begin{array}{c} H \\ I \\ R_3M - N = PR'_3 & \xrightarrow{\Delta} RH + R_2M - N = PR'_3 \end{array}$$
(6)

Die Koordinationsverbindungen 7 und 8 waren wegen der engen Isosteriebeziehung H ihres Grundgerüstes $AI-N=P_{<}'$ zu dem der Hexaorganodisilazane $Si-N-Si_{<}'$ und der Silylalkylenphosphorane²⁸⁾ $Si-C=P_{<}'$ von besonderem Interesse.

$$\begin{array}{cccc} & H & H & H \\ & I \\ (CH_3)_3 Al-N=P(CH_3)_3 & (CH_3)_3 Al-N=P(C_2H_5)_3 & (CH_3)_3 Ga-N=P(C_2H_5)_3 \\ \hline & 7 & 8 & 9 \end{array}$$

$$\begin{array}{c} H & H \\ I \\ (CH_3)_3 \text{In-N} = P(C_2H_5)_3 \\ 10 \\ 11 \\ \end{array}$$

Tab. 5. IR-Banden der N-Trialkylmetall-Komplexe von Iminotrialkylphosphoranen [cm⁻¹]

7	8	9	10	11	Zuordnung
3340 st	3338 st	3345 st	3345 st	3335 st	vNH Nujol (3000–1350)
1310 st					δCH₃P
1295 sst					
	1280 s	1270 Sch	1275 s		δCH3, CH2
	1265 s	1260 s	1260 s	1260 s	CH ₂ -wagging
	1240 s	1235 Sch	1240 s	1235 s	
a)	a)	a)	a)	a)	δCH ₃ M
1170	1170	1170 sst	1160 Sch	1175 0.1	D N
11/0 sst	11/0 sst	1110 m	1130 m	11/5 Scn 1120 st	VP=N S(CH_CH_)A1
				1150 St	0(CH3CH2)A
1045 sst	1050 sst	1050 sst	1050 m	1045 m	δNH
	1035 m	1030 m	1030 s	1025 st	
	1015 s	1005 Scn	1005 Scn	1005 Scn	V(C-C)P
	965 m	960 m	960 III	975 St	
945 st				0.00	ρCH ₃ P
				930 sst	ν(C – C)Al
				905 m	
865 st					ρCH3Ρ
	770 st	780 st	775 st	775 sst	
	765 Sch	765 Sch	765 Sch	765 Sch	$\rho(CH_3, CH_2)P, Al$
765 s		715 st	720 Sch	710 m	
725 m					vPC ₃
685 sst	685 sst	680 Sch	675 Sch		ρCH₃M
610 m	610 m	650 s	625 m	635 sst	•
570 m	570 s	570 s	510 s		νMC ₃
530 st	530 m	530 sst	470 st	530 Sch	
(495 s)		(480 s)		(495 Sch)	vM - N?
a) Verdeckt w					

28) H. Schmidbaur und W. Tronich, Chem. Ber. 100, 1032 (1967); dort weitere Literatur.

Die NMR- und IR-Spektren bestätigen in allen Fällen die vorgeschlagene Konstitution (Einzelheiten s. in den Tabellen 2 und 5); Molekulargewichtsbestimmungen bewiesen monomeren Molekülbau.

2) Thermolyse der Komplexe

Wird bei der Addition der Metalltrialkyle an die Iminotriorganophosphorane nicht ausreichend gut gekühlt oder werden die Primärprodukte auf über ca. 50° erhitzt, so tritt rasch und vollständig eine Reaktion nach Gl. (6) ein. Die Endprodukte 12–19 sind gut zu reinigen und fallen in hohen Ausbeuten an.

Das Ergebnis der Molekulargewichtsbestimmungen, wonach allen Verbindungen doppeltes Formelgewicht zukommt, entspricht früheren Befunden^{4,5)} und unterstreicht die dort aufgezeigten Isosteriebeziehungen^{3b,4,5)}. Allen Verbindungen liegt ein anorganisches Skelett mit viergliedrigem Ringsystem, bestehend aus zwei Metallund zwei Stickstoffatomen, zugrunde, z. B.:

Physikalische Konstanten, Analysenwerte und IR- sowie NMR-Daten finden sich in den Tabellen 2, 6 und 10.

V. N-Dimethylphosphino(arsino)-iminotrimethylphosphoran

Die doppelten Umsetzungen von *N*-Lithium-iminotrimethylphosphoran (2) mit Dimethylchlorphosphin und -arsin erlauben erstmals die Darstellung der Verbindungen 20 und 21. Das Äthylhomologe 22 entsteht sinngemäß aus $\text{LiN} = P(C_2H_5)_3$.

 $(CH_3)_2PC1$ + $(CH_3)_3P=N=P(CH_3)_3$ 20 + $(CH_3)_3P=N-Li$ \rightarrow LiC1 $(CH_3)_2AsC1$ 2 + $(CH_3)_2As-N=P(CH_3)_3$ 21

$$(CH_3)_2As=N=P(C_2H_5)_3$$
 22

20, 21 und 22 sind stark luft- und feuchtigkeitsempfindliche Substanzen, deren Struktur durch Analysen, Molgewichte und NMR- sowie IR-Spektren gesichert wurde.

Im Protonenresonanzspektrum von 20 erscheinen zwei 1:1-Dublettsignale im Intensitätsverhältnis 3:2, deren ${}^{1}H$ -C- ${}^{31}P$ -Kopplungskonstanten sich erwartungs-

13	14	15	16	Zuordnung
1285 st	1280 m	1280 m	1280 sst	δCH ₃ , CH ₂
1262 st	1262 m	1260 m	1260 sst	
1225 m	1225 m			CH ₂ -wagging
1175 st	1180 m	1170 s	1145 st	δCH ₃ M + δ(CH ₃ ,CH ₂)Al
1125 sst	1125 sst	1148 st 1100 m	1110 Sch 1120 sst	vP=N <m< td=""></m<>
1055 s	1055 s	1050 s		/
1045 s	1045 s	1040 s	1045 s	$\nu(C-C)P$
1030 st	1028 st	1025 m	1020 m	ν(CC)P
1010 s	1010 s	1005 s	1005 Sch	ν(C – C)P
992 s	992 m	990 Sch 975 s	990 s 980 Sch	
	945 st 915 st	2,00	200 50	v(C-C)Al
790 sst	790 sst	785 m	780 sst	
760 sst	760 sst	765 m	760 sst	ρ(CH ₃ ,CH ₂)P
725 sst	722 sst	745 Sch 725 m 705 s	735 m 720 m	νPC ₃
680 st	680 Sch	665 s	675 st	$\rho CH_3M +$
645 st	645 st	650 Sch	660 Sch	$\rho(CH_3, CH_2)AI +$
625 s	620 Sch	630 s	625 s	vPC ₃
656 Sch		585 st	585 Sch	vMC ₂
535 s		535 s 515 s	540 sst 475 st	
455 s		435 s	465 m	
440 st			430 m	

Tab. 6. IR-Banden der N-Dialkylmetall(III)-iminotrialkylphosphorane 13-16 [cm⁻¹]

gemäß stark unterscheiden (Tab. 2). Die Absolutbeträge dieser J-Werte beweisen das Vorliegen von drei- und fünfwertigen Phosphoratomen der Koordinationszahlen 3 und 4. Im Spektrum von **21** ist das $P(CH_3)_2$ -Dublett von **20** durch das $As(CH_3)_2$ -Singulett ersetzt. Das Spektrum von **22** schließlich weist anstelle des $P(CH_3)_3$ -Dubletts von **21** das A_3B_2X -Multiplett der phosphorständigen Äthylgruppen auf. Die Zuordnung der IR-Spektren ist nicht völlig zweifelsfrei (Tab. 7).

VI. Bis-trimethylphosphoranyliden-ammoniumjodid (23) und Trimethylphosphoranyliden-trimethylarsenyliden-ammoniumjodid (24)

Die Quartärisierung der dreiwertigen Phosphor- bzw. Arsenatome in 20 und 21 mittels Methyljodid führt schon bei Raumtemperatur einheitlich zu den ionischen Verbindungen 23 und 24:

20	21	22	Zuordnung
2960 sst	2960 sst	2960 sst	
2890 st	2890 sst	2930 st 2900 sst 2880 s 2800 s 1460 st	vCH ₃ , CH ₂
1410 st	1410 st	1410 st 1380 st	δCH ₃ , CH ₂
1305 sst	1305 sst		δ(CH ₃)P
1285 sst	1285 sst		
1260 s	1240 m	1260 s 1240 st	CH ₂ -wagging δ(CH ₃)As
1170 sst	1140 sst 1110 Sch	1140 sst	vP = N
		1045 st 1025 st 1005 Sch	$\nu(C-C)P$ $\nu(C-C)P$
955 Sch			
935 sst	935 sst		p(CH ₃) ₃ P
880 sst	875 m	875 sst	ρ(CH ₃) ₂ P
845 sst	845 s 820 st	820 st 770 st 755 s	ρ(CH ₃) ₃ P ρ(CH ₃) ₂ As ρ(C ₂ H ₅)P
740 Sch	740 s	740 m	
715 sst	715 st	710 st	vPC ₃ , PC ₂
685 st			
660 st	672 st	660 s 640 m	
610 st			ν P N ?
	565 Sch 550 sst	565 sst 545 Sch	vAsC ₂

Tab. 7. IR-Banden der N-Dimethylphosphino(arsino)-iminotrialkylphosphorane [cm⁻¹]

Ein Salz mit dem Kation von 23 mit Chlorid-Gegenionen wurde kürzlich auch von *Rave* durch die Thermolyse von Trimethylphosphinimoniumchlorid [(CH₃)₃PNH₂]Cl erhalten^{18b)}. 24 ist das erste bisher beschriebene "gemischte Yliden-ammonium-salz". 23 zeigt ein außergewöhnlich bandenarmes IR-Spektrum, dessen Zuordnung zu den Schwingungen des Kations nur geringe Schwierigkeiten bereitet (Tab. 8). Diese Banden und das im NMR-Spektrum gefundene 1:1-Dublett der Methylprotonen beweisen die strukturelle Identität beider (CH₃)₃P-Gruppen, die aus der durch Mesomerie verursachten Symmetrisierung resultiert¹¹⁻¹⁸⁾.

$$(CH_3)_3 \overset{\oplus}{P} - \underline{N} = P(CH_3)_3 \longleftrightarrow (CH_3)_3 \overset{\oplus}{P} - \underline{\overset{\odot}{N}} - \overset{\oplus}{P}(CH_3)_3 \longleftrightarrow (CH_3)_3 P = \underline{N} - \overset{\oplus}{P}(CH_3)_3$$

$$(CH_3)_3 P = \overset{\oplus}{N} = P(CH_3)_3$$

23	24	Zuordnung	
1310 st	1310 st	δCH₃P	
1295 st	1295 m 1272 m	δCH3As	
1240 sst	1130 sst 970 s	$v_{as}P-N-P$, As oCH ₃ As	
945 sst	945 st 920 sst	ρCH ₃ P ρCH ₃ As	
880 st	880 m	ρCH ₃ P	
868 m	868 m 860 Sch 848 Sch		
760 m	760 m	vPC3	
750 m	745 m 705 m		
670 m			
	648 m 640 m 605 m	vAsC3	
590 m		$\nu_{s}P-N-P$	
	558 m	$v_sAs - N - P$	

Tab. 8. IR-Banden der Bis-trimethylphosphoranyliden- und Trimethylphosphoranylidentrimethylarsenyliden-ammoniumjodide [cm⁻¹]

Ähnliches gilt für das Kation in 24, jedoch entfällt hier die Gleichverteilung der Gewichte auf die entsprechenden mesomeren Formen. Mit Sicherheit wird der Beitrag der Form $(CH_3)_3P = N - As(CH_3)_3$ zum Grundzustand größer sein als der von $(CH_3)_3P - N = As(CH_3)_3$.

23 und 24 weisen große chemische und thermische Stabilität auf. So lösen sich beide unzersetzt in Wasser und werden dort erst auf Zusatz starker Säuren hydrolysiert. Trockenes Erhitzen führt erst oberhalb von 250° zur Zersetzung. Diese hohe Beständigkeit haben die Kationen von 23 und 24 mit einigen isosteren silicium- und phosphororganischen Verbindungen gemein, deren Struktureinheiten zu den stabilsten der metallorganischen Chemie zählen:

 $\begin{array}{l} R_{3}Si-O-SiR_{3}\\ [R_{3}P-O-PR_{3}]^{2+}\\ [R_{3}P-O-SiR_{3}]^{+}\\ [R_{3}Si-N-SiR_{3}]^{-}\\ R_{3}Si-N=PR_{3}\\ R_{3}Al-O-PR_{3}\\ [R_{3}Al-O-SiR_{3}]^{-} \end{array}$

Allen diesen Systemen dürfen graduell abgestufte, aber prinzipiell gleichartige Bindungsverhältnisse zugrunde liegen^{3b)}.

Wir danken dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, für die Förderung unserer Untersuchungen.

Beschreibung der Versuche

Allgemeines: Zur Fernhaltung von Luft und Feuchtigkeit wurden die Experimente unter trockenem Stickstoff als Schutzgas vorgenommen. Lösungsmittel und Geräte waren entsprechend vorbehandelt. Die Molekulargewichte wurden kryoskopisch in einer geschlossenen Beckmann-Apparatur bestimmt. Benzol diente als Lösungsmittel. Die NMR-Spektren wurden mit einem Gerät vom Typ Varian A 60 bei 60 MHz und $30-35^{\circ}$ aufgenommen. Bei den chemischen Verschiebungen in Tab. 2 beziehen sich negative Vorzeichen auf die Seite niedrigerer Feldstärken, bezogen auf den Standard. Konzentrationseffekte wurden nicht gesondert berücksichtigt. Die IR-Spektren entstammen einem Perkin Elmer Spektrometer, Mod. 337. Festsubstanzen wurden mit Nujol verrieben, Flüssigkeiten in reiner Form mit kapillarer Schichtdicke vermessen.

Die Verbrennungsanalysen wurden im Institutslaboratorium durchgeführt (C, H, N). Zur Bestimmung der Metalle fand die komplexometrische Titration nach Schwarzenbach Anwendung. Halogen wurde nach Volhard titriert und Phosphor nach einem Wurtzschmitt-Aufschluß gravimetrisch erfaßt.

Trimethylphosphin und Triäthylphosphin wurden nach bekannten Verfahren durch Grignardierung von Phosphortrichlorid erhalten. Die Darstellung von Iminotriäthylphosphoran erfolgte nach Birkofer et al.¹⁹⁾. Methyllithium war aus Chlormethan und Lithiummetall zugänglich²⁹⁾, die Metallalkyle von Zink, Cadmium, Gallium und Indium durch Methylierung der Metallchloride oder -bromide mit Methyllithium. Trimethyl- und Triäthylaluminium sind käuflich. Zur Synthese von Dimethylchlorphosphin³⁰⁾ und -arsin³¹⁾ sowie Trimethylsilylazid⁸⁾ und Triäthylsilanol³²⁾ dienten ebenfalls Literaturvorschriften.

Iminotrimethylphosphoran (1): Aus 62.4 g Trimethylphosphin (0.82 Mol) und 1.64 Mol äther. Stickstoffwasserstoffsäure werden nach 1. c.⁶⁾ 90.0 g Trimethylphosphinimonium-azid (82%) bereitet. Dieses Produkt wird in einem trockenen Handschuhkasten fein pulverisiert. 22.0 g davon (0.164 Mol) werden in 200 ccm flüssigem Ammoniak gelöst (Solvatationswärme!) und anschließend langsam mit 3.7 g Natrium (0.164 g-Atom) versetzt. Unter heftiger Gasentwicklung (H₂, NH₃) tritt Reaktion ein. Am Ende ist die Lösung leicht blau gefärbt. Während des Auftauens im Stickstoffstrom verdampft das Lösungsmittel. Der feste Rückstand wird im Handschuhkasten fein gepulvert und in eine Extraktionshülse gebracht. Im Soxhlet gelangt 1 in die Benzolphase und ist daraus durch Destillation i. Vak. isolierbar. Ausb. 9.6 g (72%). (Bei langsamem Aufheizen i. Vak. sublimiert 1 vor Erreichen des Siedepunkts.)

N-Lithium-iminotrimethylphosphoran (2): 4.5 g 1 (0.05 Mol) in 40 ccm Äther werden langsam mit einer äther. Lösung von *Methyllithium* (0.05 Mol) versetzt. Unter lebhafter Gasentwicklung bildet sich ein farbloser Niederschlag von 2. Die erhaltene Suspension kann als solche weiterverarbeitet oder i. Vak. vom Äther befreit werden; die Ausbeuten sind dabei quantitativ (4.6 g $\approx 100 \frac{9}{0}$).

N-Methylmetall(II)-iminotrialkylphosphorane 3-6

Allgemeine Vorschrift: Mengenangaben finden sich in Tab. 9.

In einem kleinen Kölbchen vorgelegtes Dimethylzink oder -cadmium wird in Äther oder Benzol gelöst und langsam unter Rühren mit einer äquimolaren Menge des Iminophosphorans versetzt. Unter Methanentwicklung tritt Reaktion ein. Zur Vervollständigung wird noch kurze

²⁹⁾ I. Ruidisch und M. Schmidt, Z. anorg. allg. Chem. 311, 331 (1961).

³⁰⁾ H. E. Ulmer, L. C. D. Groenweghe und L. Maier, J. inorg. nuclear. Chem. 20, 82 (1961).

³¹⁾ H. Schmidbaur, H. S. Arnold und E. Beinhofer, Chem. Ber. 97, 449 (1964).

³²⁾ L. H. Sommer, E. W. Pietrusza und F. C. Whitmore, J. Amer. chem. Soc. 68, 2282 (1946).

						T			
	R ₃ PNF	ł		(CH ₃);	2 M	Losungs- mittel		Produk	t
R	g	mMol	М	g	mMol	ccm	Nr.	g	%
CH ₃	3.22	35.4	Zn	3.78	35.4	40 Äther	3	5.6	93
C_2H_5	8.50	64.0	Zn	6.10	64.0	50 Benzol	4	11.7	96
CH3	3.84	42.2	Cd	6.00	42.2	50 Benzol	5	8.4	91
C ₂ H ₅	5.42	40.7	Cđ	5.80	40.7	50 Benzol	6	8.6	81

Tab. 9.	Ansätze und	Ausbeuten	bei der	Darstellung der	N-Methylmetall(II)-trialkylphosphin-
				imine 3–6	

Zeit unter Rückfluß erhitzt. Nach Abziehen des Lösungsmittels werden 3 und 5 durch Sublimation i. Hochvak., 4 und 6 durch Kristallisation aus Benzol gereinigt. Analysen s. Tab. 10.

Methylzink-triäthylsilanolat: Aus 3.68 g *Triäthylsilanol* (27.8 mMol) und 2.65 g $Zn(CH_3)_2$ (27.8 mMol) in 30 ccm Äther werden, wie für **3**-6 beschrieben, 5.1 g $[CH_3ZnOSi(C_2H_5)_3/_4$ (87%) erhalten (aus Benzol).

Trialkylmetallkomplexe von Iminotrialkylphosphoranen (7–11)

In einem kleinen Kölbchen wird eine bekannte Menge des *Iminophosphorans* in Äther gelöst (Tab. 11) und mit Eis auf 0° gekühlt. Unter Rühren wird dann eine Lösung des *Trialkylmetallätherats* so zugegeben, daß keine Gasentwicklung zu beobachten ist. Notfalls wird mit Eis/Kochsalz gekühlt. Nach einstdg. Rühren bei 0° wird das Lösungsmittel i. Vak. entfernt (1 Stde., Hochvak.). Die Produkte können nur im Tiefkühlschrank aufbewahrt werden. Geschlossene Gefäße zerspringen bei unsachgemäßer Lagerung. Langsames Erhitzen auf 100° führt zur kontrollierten Zersetzung, die zu Alkan und 12–16 führt. Eine destillative Reinigung ist somit nicht möglich. Umkristallisieren gelingt nur unbefriedigend, ist bei exakten Ansätzen aber kaum erforderlich.

N-Dialkylmetall(III)-iminotriorganophosphorane 12-19

Die Darstellung erfolgt, wie für 3-6 beschrieben. Ansätze und Ausbeuten gibt die Tab. 11. 12-16 werden durch Destillation, 17-19 durch Kristallisation aus Benzol gereinigt. Zur völligen Entbindung von Alkan muß vor der Destillation und nach Entfernen des Lösungsmittels das Produkt 1-2 Stdn. auf 100° erhitzt werden. Anderenfalls treten in der Apparatur starke Druckschwankungen auf.

N-Dimethylphosphino(arsino)-iminotrialkylphosphorane 20-22

Iminotrimethyl- oder -triäthylphosphoran wird mittels Methyllithium in der beschriebenen Weise in das entsprechende Lithiumsalz übergeführt (s. bei 2!). Die so erhaltene äther. Suspension bekannten Gehalts wird unter Rühren mit stöchiometrischen Mengen des Dimethylmetalloidchlorids versetzt. Letzteres wird dazu mit Vorteil ebenfalls in Äther gelöst (Tab. 12). Unter Abscheidung von LiC! tritt exotherme Reaktion ein. Kurzzeitiges Erhitzen unter Rückfluß beendet die Umsetzungen. Nach Filtrieren wird i. Vak. fraktioniert destilliert. Ausbeuten gibt die Tab. 12.

Bis-trimethylphosphoranyliden-ammoniumjodid (23): 1.65 g 20 (8.46 mMol) in 15 ccm Benzol werden mit 1.32 g *Methyljodid* (9.31 mMol, 10% Überschuß) versetzt. In exothermer Reaktion bildet sich ein kristalliner Niederschlag von 23. Nach Abziehen des Lösungsmittels und des CH₃J-Überschusses i. Vak. kann das Produkt aus Methanol umkristallisiert werden. Ausb. 2.2 g (77%).

Trimethylphosphoranyliden-trimethylarsenyliden-ammoniumjodid (24): In gleicher Weise entstehen aus 2.31 g 21 (15.3 mMol) und 2.39 g CH_3J (16.82 mMol) in 50 ccm Äther 3.7 g 24 (82%).

24
÷
Verbindungen
der
Konstanten
ıysik.
þ
pun
Analysen
largewichte,
Moleki
Formeln,
10.
Tab.

	Tamaal	1 m	į	(_	Ţ	¥.	nalysen		2		Cathana	Cda (Terr
	r ormer	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	Ber.	Gef.	$\mathbf{Z}_{\mathbf{r}} = \mathbf{Z}_{\mathbf{ers.}}$	no t/-dne
-	HNP(CH ₃) ₃	91.07	97	39.65	40.00	11.09	11.26	15.42	15.27	34.08a)	33.46 ^{a)}	5960°	70°/1
7	LiNP(CH ₃) ₃	97.03	I	37.14	36.47	9.35	9.11	I	I	7.15	7.09	Zers.	Zers.
9	CH ₃ ZnNP(CH ₃) ₃	682.0	699	28.15	28.71	7.04	7.20	8.22	8.29	38.37	38.06	350° (Z.)	240°/Hochvak. ^{b)}
4	CH ₃ ZnNP(C ₂ H ₅) ₃	850.32	830	39.55	39.04	8.47	8.46	6.59	6.61	30.78	31.04	292°	I
Ś	CH ₃ CdNP(CH ₃) ₃	870.12	837	22.05	22.07	5.52	5.30	6.44	5.91	51.70	50.92	230° (Z.)	180°/Hochvak. ^{b)}
9	CH ₃ CdNP(C ₂ H ₅) ₃	1038.4	766	32.55	32.30	6.93	6.41	5.39	5.55	43.30	42.92	$214 - 218^{\circ}$	I
I	CH ₃ ZnOSi(C ₂ H ₅) ₃	846.6	843	39.69	39.34	8.51	8.15	!	I	30.80	30.75	$155 - 158^{\circ}$	ſ
7	(CH ₃) ₃ AlNHP(CH ₃) ₃	163.18	181	44.38	44.15	11.24	11.64	8.19	8.58	16.50	16.53	4446° (Z.)	I
80	(CH ₃) ₃ AINHP(C ₂ H ₅) ₃	205.25	227	51.70	52.70	11.92	12.18	6.47	6.82	13.23	13.16	28 — 30° (Z.)	
6	(CH ₃) ₃ GaNHP(C ₂ H ₅) ₃	247.99	267	42.77	43.67	10.05	9.68	5.39	5.66	28.21	28.21	15 — 17° (Z.)	l
10	(CH ₃) ₃ InNHP(C ₂ H ₅) ₃	293.09	334	36.64	36.88	7.85	8.53	I	I	40.15	39.18	12-15° (Z.)	ł
11	(C ₂ H ₅) ₃ AlNHP(C ₂ H ₅) ₃	247.34	279	58.80	58.29	12.90	12.53	6.00	5.66	10.40	10.92	flüss.	ţ
12	(CH ₃) ₂ AINP(CH ₃) ₃	loc. cit. ²	,5b)	a.com	1		-	1	1	1	I	1	, i
13	(CH ₃) ₂ AlNP(C ₂ H ₅) ₃	378.44	374	50.79	49.65	11.09	11.60	7.40	7.20	14.36	14.23	$138 - 140^{\circ}$	$160 - 165^{\circ}/0.02$
14	$(C_2H_5)_2AINP(C_2H_5)_3$	434.54	423	55.32	54.78	11.51	11.40	6.45	6.09	12.42	13.01	$104-107^{\circ}$	$195 - 198^{\circ}/0.02$
15	(CH ₃) ₂ GaNP(C ₂ H ₅) ₃	463.19	452	41.43	41.75	9.27	8.89	6.04	6.10	30.04	29.88	$100 - 103^{\circ}$	172°/0.02
16	(CH ₃) ₂ InNP(C ₂ H ₅) ₃	554.12	535	34.65	34.37	7.59	7.45	5.05	5.10	41.50	40.72	83 - 85°	192°/0.02
17	(CH ₃) ₂ AlNP(C ₆ H ₅) ₃	666.72	663	72.05	68,94	6.35	5.90	4.20	4.36	I	I	$268 - 272^{\circ}$	anaar
18	(CH ₃) ₂ GaNP(C ₆ H ₅) ₃	751.4	704	63.90	63.87	5.64	5.54	3.72	3.92	I	I	$238 - 242^{\circ}$	1
19	(CH ₃) ₂ InNP(C ₆ H ₅) ₃	842.0	(550)	57.50	57.48	5.03	5.05	3.32	3.54	ł	1	$230-232^{\circ}$	1
20	(CH ₃) ₂ PNP(CH ₃) ₃	151.13	154	39.72	40.10	9.93	10.07	9.27	9.43	I	l	8.5 10°	85-86°/12
21	(CH ₃) ₂ AsNP(CH ₃) ₃	195.07	186	30.78	31.01	7.69	7.91	7.16	7.16	I	I	l	9699°/12
52	(CH ₃) ₂ AsNP(C ₂ H ₅) ₃	237.15	236	40.45	40.10	8.87	8.94	6.21	6.21	I	I	1	114-115°/12
23	(CH ₃) ₃ PNP(CH ₃) ₃ J	293.07	I	24.55	25.10	6.14	6.38	4.78	4.67	21.15a.c)	21.33a.c)	267-269° (Z.)	I
24	(CH ₃) ₃ AsNP(CH ₃) ₃ J	337.01	۱	21.75	21.38	5.34	5.82	4.07	4.31	37.75d)	37.45d)	237° (Z.)	ļ

	R′ ₁ PNH	t	$R_3M \cdot O(C_2H_5)_2$				Lösungs- mittel	Produkt			
R′	g	mMol	R	M	g	mMol	ccm	Nr.	g	%	
СН3	3.23	35.5	CH3	Al	5.18	35.5	60 Äther	7	5.2	90	
C ₂ H ₅	2.64	19.8	CH3	Al	2.90	19.8	60 Äther	8	3.6	89	
C_2H_5	2.09	15.7	CH3	Ga	2.94	15.7	60 Äther	9	3.4	87	
C_2H_5	2.74	20.6	CH ₃	In	4.66	20.6	80 Benzol	10	6.0	100a)	
C ₂ H ₅	4.75	35.7	C_2H_5	Al	4.07	35.7	80 Äther	11	8.0	91	
CH ₃	3.23	35.5	CH3	Al	5.18	35.5	30 Äther	12	4.6	88	
C_2H_5	2.72	20.5	CH ₃	Al	3.00	20.5	30 Äther	13	3.4	88	
C_2H_5	3.78	28.4	C_2H_5	Alp)	3.24	28.4	40 Äther	14	4.1	67	
C_2H_5	4.58	34.4	CH ₃	Ga	6.50	34.4	40 Äther	15	7.3	91	
C_2H_5	4.09	30.8	CH ₃	In	6.98	30.8	40 Äther	16	7.1	83	
C ₆ H ₅	1.04	3.75	CH ₃	Al	0.58	4.0	5 Äther	17	0.55	44	
C ₆ H ₅	2.40	8.65	CH ₃	Ga	1.85	9.1	5 Äther	18	2.30	71	
C ₆ H ₅	1.84	6.64	CH ₃	In	1.48	7.0	10 Äther	19	1.45	52	

Tab. 11. Ansätze und Ausbeuten bei der Darstellung von N-Trialkylmetall(III)-trialkylphosphinimin-Komplexen und ihrer Thermolyseprodukte

a) Noch benzolhaltig.
 b) (C₂H₅)₃Al.

Tab. 12. Ansätze und Ausbeuten für die Synthesen von 20, 21 und 22

	R₃PNH		LiCH ₃		(CH ₃) ₂	MCl	Lösungs- mittel	Produkt		
R	g	mMol	mMol	М	g	mMol	ccm	Nr.	g	%
CH3	5.15	56.6	56.6	Р	5.46	56.6	70 Äther	20	6.9	81
CH3	2.66	29.3	29.3	As	4.12	29.3	40 Äther	21	4.7	83
C_2H_5	6.19	46.5	46.5	As	6.53	46.5	40 Äther	22	7.7	69

[480/67]